Phase behavior of polydisperse sticky hard spheres: analytical solutions and perturbation theory

نویسندگان

  • Domenico Gazzillo
  • Riccardo Fantoni
  • Achille Giacometti
چکیده

We discuss phase coexistence of polydisperse colloidal suspensions in the presence of adhesion forces. The combined effect of polydispersity and Baxter’s sticky-hard-sphere (SHS) potential, describing hard spheres interacting via strong and very short-ranged attractive forces, give rise, within the Percus-Yevick (PY) approximation, to a system of coupled quadratic equations which, in general, cannot be solved either analytically or numerically. We review and compare two recent alternative proposals, which we have attempted to by-pass this difficulty. In the first one, truncating the density expansion of the direct correlation functions, we have considered approximations simpler than the PY one. These Cn approximations can be systematically improved. We have been able to provide a complete analytical description of polydisperse SHS fluids by using the simplest two orders C0 and C1, respectively. Such a simplification comes at the price of a lower accuracy in the phase diagram, but has the advantage of providing an analytical description of various new phenomena associated with the onset of polydispersity in phase equilibria (e.g. fractionation). The second approach is based on a perturbative expansion of the polydisperse PY solution around its monodisperse counterpart. This approach provides a sound approximation to the real phase behavior, at the cost of considering only weak polydispersity. Although a final seattlement on the soundness of the latter method would require numerical simulations for the polydisperse Baxter model, we argue that this approach is expected to keep correctly into account the effects of polydispersity, at least qualitatively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase behavior of weakly polydisperse sticky hard spheres: perturbation theory for the Percus-Yevick solution.

We study the effects of size polydispersity on the gas-liquid phase behavior of mixtures of sticky hard spheres. To achieve this, the system of coupled quadratic equations for the contact values of the partial cavity functions of the Percus-Yevick solution [R. J. Baxter, J. Chem. Phys. 49, 2770 (1968)] is solved within a perturbation expansion in the polydispersity, i.e., the normalized width o...

متن کامل

The stability limit of the fluid phase of polydisperse sticky spheres

It has been shown by Stell [J. Stat. Phys., 63, 1203 (1991)] that at low temperature monodisperse sticky spheres collapse to form coexisting close-packed solid and infinitely dilute gases. We show that polydisperse sticky spheres also collapse and calculate the collapse temperature. The polydisperse spheres separate into fractions with narrower polydispersities which can then solidify. This is ...

متن کامل

Alternative Approaches to the Equilibrium Properties of Hard-Sphere Liquids

An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consistent formulation, thus improving and extending the known analytical results of the Percus–Yevick theory. Approximate expressions for the contact value...

متن کامل

Yukawa sticky m-point model of associating fluid

The product-reactant Ornstein–Zernike approach, supplemented by the ideal network approximation, is formulated for the Yukawa sticky m-point ~YSmP! model of associating fluid. The model is represented by the multicomponent mixture of the Yukawa hard spheres with m sticky points randomly located on the surface of each hard sphere. Extensions of the regular integral equation closures, which inclu...

متن کامل

Structure factors for the simplest solvable model of polydisperse colloidal fluids with surface adhesion

Closed analytical expressions for scattering intensity and other global structure factors are derived for a new solvable model of polydisperse sticky hard spheres. The starting point is the exact solution of the “mean spherical approximation” for hard core plus Yukawa potentials, in the limit of infinite amplitude and vanishing range of the attractive tail, with their product remaining constant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005